Simultaneous estimation of the dip angles and slip distribution on the faults of the 2016 Kumamoto earthquake through a weak nonlinear inversion of InSAR data

نویسندگان

  • Yukitoshi Fukahata
  • Manabu Hashimoto
چکیده

At the 2016 Kumamoto earthquake, surface ruptures were observed not only along the Futagawa fault, where main ruptures occurred, but also along the Hinagu fault. To estimate the slip distribution on these faults, we extend a method of nonlinear inversion analysis (Fukahata and Wright in Geophys J Int 173:353-364, 2008) to a two-fault system. With the method of Fukahata and Wright (2008), we can simultaneously determine the optimal dip angle of a fault and the slip distribution on it, based on Akaike’s Bayesian information criterion by regarding the dip angle as an hyperparameter. By inverting the InSAR data with the developed method, we obtain the dip angles of the Futagawa and Hinagu faults as 61° ± 6° and 74° ± 12°, respectively. The slip on the Futagawa fault is mainly strike slip. The largest slip on it is over 5 m around the center of the model fault (130.9° in longitude) with a significant normal slip component. The slip on the Futagawa fault quickly decreases to zero beyond the intersection with the Hinagu fault. On the other hand, the slip has a local peak just inside Aso caldera, which would be a cause of severe damage in this area. A relatively larger reverse fault slip component on a deeper part around the intersection with Aso caldera suggests that something complicated happened there. The slip on the Hinagu fault is almost a pure strike slip with a peak of about 2.4 m. The developed method is useful in clarifying the slip distribution, when a complicated rupture like the Kumamoto earthquake happens in a remote area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters

Abstract Earthquakes occur at teh border of teh plates and faults, causing financial and casual damages. Teh study of earthquakes and surface deformation is useful in understanding teh mechanism of earthquakes and managing teh risks and crises of earthquakes. A fault can be specified by its geometric source parameters. In Okada’s definition, these parameters are length, width, depth, strike, di...

متن کامل

Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano

An MJMA6.5 earthquake (foreshock) and MJMA7.3 earthquake (mainshock) struck Kumamoto Prefecture on April 14, 2016, and April 16, 2016. To evaluate the effect of crustal deformation due to the earthquake on the Aso magma system, we detected crustal deformation using InSAR and GNSS. From InSAR analysis, we detected large crustal deformations along the Hinagu Fault, the Futagawa Fault, and the nor...

متن کامل

Combination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction

In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. The...

متن کامل

Structural evidence on strike slip Kinematic inversion of the Kushk-e-Nosrat Fault zone, Central Iran

NW-tending faults in Central Iran are expected to represent dominant dextral components due to their orientation with respect to the northward motion of the Arabian Plate with respect to Eurasia. However, previously published works, as well as the focal mechanism solution of the area's earthquakes, indicate evidence of sinistral kinematic along the major faults in Central Iran. Here we present ...

متن کامل

Structural concepts for Soltanieh fault zone (NW Iran)

Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016